Skip navigation
Jude Dornisch

Still at it

Posted by Jude Dornisch Jul 8, 2011

So thought I forgot about this.

Anyway it is was really hectic here for a while as we had to expand or move. Well we doubled our space and nearly doubled our membership so that went well, but shifting and moving and running enough power to the new wood shop took a bit of time.

 

But I am back at it again.

 

So the coffee table board is first up.

 

Thinking about a table with lots of holes in it and the thought of jamming bits of metal into them poses some different problems. I'm currently thinking I will have to develop some kind of plastic end for the components to avoid major gouging.

 

The thing is if I go that route maybe I should smarten up the whole thing. Since I'm tinkering with the connection should I go ahead and include the ablity to determine what component is plugged into what hole?

 

Hmmmm. thinking.

Jude Dornisch

Not Goodby

Posted by Jude Dornisch May 8, 2011

Although the Challenge is over the project goes on. I'll be updating this blog as time goes on at least until the next challenge.

 

The Big Board was a success. It was also a lot of fun. I did however get diverted into using just found material in order to make the project as widely buildable as possible. Now I'm going to concentrate on a higher quality process. Both with the board and with the components.

 

I currently have three new boards in the works.

 

First is a furniture grade wood board/coffee table. I expect I will make the components out of various hardwoods also. I'll achieve visual separation by using different woods.

 

Next is a what I call a suburban school district version. This will essentially be the basic breadboard on a whiteboard but in a much more refined version.

 

Finally I am working on a plastic cast version. The Idea is to work everything out so that it could be jobbed out. This version will rely much more on automating the processes.

 

While I have every intention of keeping the blog updated. Don't be surprised if the post are monthly at best.

With several boards done or in process it is time to work on moving parts.

 

In general translating the 10x motion to 1x seems like a pointless endeavour. Rotary motion translates easily but up and down left and right not so much. There should also be a level of robustness that is not as necessary for static parts.

 

So I'll just build working switches instead of embedding any components.

 

switchA eight switch dip.

 

Starting with a dip I decided to try some vacuum forming, mostly because I've never tried it before. I had lots of milk jugs laying around for another project Front  (my semi-submergible cow-headed sea-monster milk carton boat).

 

 

Vacuum Q&DSo I built a mini-former.

 

 

 

SlidersIt makes acceptable switch covers but I'll probably abaondon it because it seems a bit to involved for my self imposed build it anywhere limit. Molded or carved buttons and switches. But we will see.

Jude Dornisch

Making the Board

Posted by Jude Dornisch Apr 18, 2011

Probably the most tedious and mundane task in the entire project is the construction of the solder-less breadboard itself. This is only important in that it will be the job most likely to devolve to the instructor. You can get enthusiastic help constructing the 10x components. But that enthusiasm wanes quickly when talking about hundreds of tie points. So when constructing the board I am trying to keep in mind not only the wide availability of materials, but also the ease of construction.

 

There is no single right way to build the board. What I am going to do is give a series of indicators and things I've tried that work.

 

The following will assume we are scaling up from 1/10 inch to 1 inch.

 

 

 

Lets break the board down into the face, the connective rails and the separators.

Model

Looking at a board the key features are apparent. Holes. Lots of Holes. But the holes tend to be in groups of five. The other common distinguishing feature is the trough or troughs. Depending on the board the other areas lacking holes, call them the borders also show up.

 

Board face

The obvious first choice of material for the face is 1 inch pegboard. Filling in unneeded holes is a lot less work then drilling the needed ones. But if you choose to use another material the very first thing you should do is make a drilling jig.

 

Drilling Jig

The Idea here is to get a good solid grid before you start drilling. I started with some graph paper and got a solid 1 inch square by driving an 8d nail through the 4 corners. This gave me a good start on maintaining parallel. Using the nail marks as if a center punched I then drilled them out. Using this small jig I then built a 5 x 5 jig. From there maintain parallel and spacing is simply a matter of remembering where you are. Of course in the next iteration of the jig I just ran it on the CNC.

 

If you are going to construct the face out of poster-board or other cardboard like material you could just drive the nails through and skip drilling altogether. As we are incorporating one version of the board as a section of  white board I felt it important to show a way to get the correct spacings.

 

 

Find the center Finding the center

 

Marking The Board Marking The Board

Now Drill (2)Drill it out

 

The trough is important but only in that it is a handy indication. The board does not actually need a physical indentation. For most field construction I expect that no indentation will actually be made and the trough will simply be a blank (hole-less) area.

The borders are also simply aesthetic.

 

 

Rails

The rails that provide the connectivity are the true heart of the board.

rails

Looking at the guts of a breadboard you will see that it uses a simple bent metal spring.  The bends clamp down on the wire and provide the connectivity and the support. Normally the rail is bent into a flat bottom U shape with addition V shaped bends near the top to clamp onto the wire. A notch is cut between every inch so one wire doesn't effect the wire in to hole next to it for the spring action.

 

Many different materials can and probably will be used to construct the Rails. The spring action can be accomplished with the material use to electrically separate the rails.

 

During the setup for our Maker Faire the box of my premade rails got misplaced. I had a bunch of cut foam ready for rail construction. What I didn't have was time to bend the rails. Solution, stuff the foam with steel wool. While anyone who camps a lot would never recommend that for a long term solution (steel wool and a battery makes a pretty good fire starter), it did the job quite well.

 

I've used Roof flashing, partially untwisted wire rope, steel pallet strapping, crumpled aluminum foil  and soda cans so far.

 

 

Cutting

Soda cans work really well. You first have to lightly sand the coating off and then what I do is roll it around a thick pencil pinch flattening it as I slid the roll off. Pinching lets it hold its shape. Because the material is so thin and flexible there really is no reason to notch it. Oxidation may become an issue but so far it hasn't and since aluminum oxidizes so quickly I doubt it will. The ubiquitousness of  material far outweighs any downside.

 

 

Sand LightlyLightly Sand

Rail PartsSplit

FoldedRoll and Pinch

Rail filledFill The Rail then trim

 

There is no reason that I can see that the rails need to be connected side to side. My normal configuration right now is two rolled and pinched soda can rails side by side. This allows for some slop in the construction.

 

 

 

Separators

What material you use for the rails may determine what material you choose to electrically separate the rails. Foam insulation works well for most, but harder materials tend to chew it up. Foam has the advantage of allowing the wire to be embedded in it making vertical displays more practical. Wood works for non-loose packed materials. With loose packed material it doesn't provide the spring that foam does. But it works well with pallet strapping tape.

 

 

 

Overall

There are a tremendous variety of materials that can be used to construct the board. The limitations are simply time and tenacity.

I do however highly recommend that you build the Rail and Separator combination in Five hole groups. Trying to router out the underside of the board and then insert the rails. There really is a reason that house builders work with 1/16th of play. The amount of wasted material you generate is not worth the effort.

Jude Dornisch

It Works !!!

Posted by Jude Dornisch Apr 11, 2011

Picture 052.jpg

We had our Maker Faire over the weekend. We thought it a good time to present the project to a wider audience. A photo resister, a phone handset speaker some caps ,a 555 and we had a simple circuit to demos. It had to be simple because getting ready for the event cut into any time we had to work on the project.

 

I'm psyched and pumped.

 

We had the circuit setup on the board with a couple of  real size boards and components next to it. The  idea being we could get people to copy the 10x in real scale. So I'm sitting at the table and a boy and his mom walk by.   Mom is interested in the next table and the kid not so much. He walks up and looks at the 10x, then looks at the smaller ones, looks at the 10x, looks at the smaller ones and looks at me. Not saying a word I give him the OK if you want to shrug. He picks up the 555 glancing at me, I nod, he looks at the 10x board and puts the 555 on the real scale board. I'm floored, the concept works as he builds the circuit I want to jump and shout.

 

A small incident but it says it all.

 

As the day rolled on I came to see that it will also work the other way. Smaller kids also want to make it blink and beep. Kids capable of understanding but just not quite in control of their body enough to put the puzzle together without getting frustrated. Now they can have a pathway. I had always thought of going from big to small, ow I realize that small to big is equally valid. Watching Mike explain to a child how changing this would change that I deeply regret that I didn't have more 10x components ready so they could get their hands on it. I also wish I had enough rime to assemble the materials for construction. But all in all a good day.

Jude Dornisch

Saturday build

Posted by Jude Dornisch Apr 3, 2011

Yesterday was set up as a build day. A chance to get members outside of the core team a chance to participate and get their feedback.

Picture 024.jpg

 

I decided to work on an eight switch Dip.

Picture 018.jpg

Translating motion from inch to a tenth of an inch for switches seems a bit pointless so no part embedding will be done. I'm just going to build a switch.

For the first cut I hacked out the switch face in cardboard. Cutting some coat hangers for the pins and pushed them threw a foam body. For the sliders I decided to vacuum form them from milk jugs,Picture 009.jpg

The lashed up rig worked well enough and did the job. But I've decided to abandon that and just mold them from polymer clay or some other material.

 

It also became clear that our open builds for the public will have to have a bit more structure then I thought. While I always anticipated using these build as an opportunity to teach electronic components and soldiering, the need to teach about fabrication became clear.

Jude Dornisch

Moving On

Posted by Jude Dornisch Mar 31, 2011

The Proof board works well. It is a pegboard with some guide wood strips (for stiffening) and foam with aluminium rails.

 

The foam rails are just press fit for now this allows for quick interchange as the design varies. Soda can aluminium will work but will wear out pretty quick.

 

I've gone ahead a worked up a pinch roller for bending the rails. I can see that I'll need to do something to tweak the rails down the road. They work great for all the wire inserts but dip and ic pins may cause some problems depending on construction.

 

I'm going to move away from the board for now as we have a good test bed. Now on to compnents.

 

I am going to work on switches and led's first. Switches will allow me to work out pin issues with the IC packets and they have the moving parts. Translating the 10x movement to the 1x movement or just bypassing the 1x altogether will be the first issue. I'm leaning towards bypassing for now.

 

Led's are a different issue. Acrylic casting will most likely create parts that are too heavy. Other methods seem to leave unnatural looking parts. Lots of redoing here.

Jude Dornisch

Proof of Concept

Posted by Jude Dornisch Mar 29, 2011

The actual board is a pretty trivial exercise. There are of course many ways to construct it. But I want to keep in mind reproducibility and either robustness or ease of replacement.

 

To begin I am just using stuff laying around the shop.

To begin I grabbed a section pegboard, some pink foam and some roof flashing.

Looking at a variety of boards it quickly becomes clear that constructing everything in 5's is the way to go. So I took the foam (We had 2") and cut a bunch of 1" wide strips. I then took those strips and cut a 1/4" groove down the center 1" deep,

 

Beginning to construct a board the first thing I ran into was the springiness of the rails. Once the wire is inserted enough clamping has to take place to hold the the wire and whatever is attached to it in place. This is important for any wall mounted boards. The steel flashing iI was using was way to stiff. But we had some light Aluminium flashing laying around and that seemed to actually work.

 

So thinking about it I figured to bend the rails around a dowel and then flatten out the center forcing the half circles to pinch together. Wrong ...

 

While I got that to work eventually, it is way to much work (considering the number of rails that need to be produced. While I could build some jigs to speed up the process I'm not all that sure how reproducible I can make them. But then thinking just a bit more, is there any need for a single piece rail? wouldn't it work just as well to have an open center with a rail running down both sides? It certainly seems to.

 

Before I really get into manufacturing and jigging up I decided to go reall small. a half dozen 5 sections. Cutting a some 1 1/4" strips from the metal I then cut in some scrap wood I cut  3/4" and  1/4" deep grooves. Puttin the metal strip in the 3/4" groove and bending  90 then using the 1/4 " groove to bend back the the top and bottom I had one side of the rail. When both sides are insterted in to the rail they act as the clamp . This seems works very well and the open bottom allows the foam to preform some additional grip.

 

http://www.flickr.com/photos/40530354@N06/show/Picture 005.jpg

Picture 004.jpg

 

Jude Dornisch

Intro

Posted by Jude Dornisch Mar 27, 2011

I've decided to use this blog as an extended hackers notebook. I'll take from here for the more or less formal documentation.

 

I'll be much more involved in the fabrication then any thing else. It is the guerilla learning that can take place in the building that interests me the most. Anyone with kids or teaches kids realizes the connection that hands and hearts and heads have. Engaging more then one of them in the learning process is a logarithmic advance. I don't know how many times kids have asked me to help them with experiments. While kids show this connection most clearly it is basic to our human nature. Engaging the head through the hands works for everyone. With the head and hands engaged you can touch the heart and with luck engender real passion.

 

I expect to work on a wide variety of fabrication methods. To show that there is no single correct way and to develop a tool kit of technics that can be used in a variety of situations.

 

As I start I'm expecting to construct at least four general types of boards. The proof of concept board, The Home Depot board, The let the kids do it board, and the dumpster dive board. There will be equivalent versions of the components also.

 

Any Ideas, criticisms and other comments are more then welcome.