Introduction

A while back a RaspberryPi.org-designed 7-inch Display with Capacitive Touch Capability7-inch Display with Capacitive Touch Capability was released; I decided to assemble it into an enclosureenclosure. This blog post documents the steps I took.

The enclosure is very nicely made. It is not moulded but is instead composed from cut and heat-folded polystyrene material. Unlike some other enclosures, it has rounded/finished smooth edges and looks pretty good.

display-sf-in-use.jpg

 

40-Pin Header Access

I wanted the enclosure to provide full access to the 40-way connector on the Pi. To achieve this, drill and cut/file the enclosure to the dimensions shown in the photo here.

header-cutout-annotated.jpg

 

The hole will provide easy access to the connector once it is finally assembled. A heat sink would be an excellent idea too.

finished-cutout-detail.jpg

 

Assembling the LCD Panel Interface Board and Pi

The LCD panel has an interface board on the back. While assembling stuff it is important that some care is taken not to accidentally unplug the touchscreen flex PCB; it is in a vulnerable position!

lcd-board-detail-annotated.jpg

 

There are various connections on the LCD interface board but just a few are used for full functionality. The remainder are “spare”.

lcd-bits-annotated.jpg

 

The first step is to get the flat flex cable (FFC) connector attached to the LCD display. To achieve that, the connector needs to be gently pulled from the sides to open it. Push in the flat flex cable (just a small amount of force is needed on this connector) about 4mm, check it is nicely squared and not at an angle, and then carefully push the connector back into the closed position.

ffc-lcd-annotated.jpg

 

After assembly inspect it to ensure that it is still all squared. It should look like the photo above (and close-up below).

display-ffc-fitted.jpg

 

The display will be powered from the Pi (there are other options but this is the most straightforward approach and is compatible with recent Pi models). To achieve that, jumper cables will be used. Plug the red and black ones into the +5V and 0V(GND) connections on the single-in-line (SIL) header connector.

display-jumpers.jpg

 

The other ends will plug onto the Pi’s 40-way header, to pins 2 and 6 respectively.

pi-pinout.png

 

However, I wanted the 40-way connector kept clean and empty for future expansion. So, with warranty-voiding tools in hand, I cut the jumper cables in half and soldered the connections to the underside and then checked for shorts with a multimeter.

soldered-power.jpg

 

The connections were secured with epoxy glue and then the Pi was screwed on top. You probably want to insert the SD card just before this point (it is easier with the board unscrewed). If you have a recent Raspbian software image then the display and touch capability will work with no additional configuration needed.

power-mounted.jpg

 

The display connector on the Pi needs to be opened in a similar way as with the earlier connector.

pi-display-conn-opened-annotated.jpg

 

The flat cable should fit with zero force, and then the connector can be pushed back to the closed position.

ffc-finished.jpg

 

Fitting the Enclosure

The plastic enclosure is in two pieces. The front border part, and the rear part.

The LCD panel is asymmetrical and will therefore only fit the front border part of the enclosure in a particular orientation.

bezel.jpg

 

By examining the plastic, you will see that one side has a second recess which is for the LCD glass to sit inside. Take off the protective film from the front border plastic and then it should fit snugly in place. It is a millimetre-perfect fit. The LCD bezel will sit exactly flush with the front side of the plastic border part of the enclosure.

border-placed.jpg

 

At this stage an issue was discovered. The rear of the enclosure would dig against the touchscreen flex PCB enough to force out the flex from the connector and bend it at a sharp 90 degree angle in a shear type action against the PCB. I knew I would have to hack away at the enclosure but I didn’t know by how much. The result was ugly (I couldn’t easily clamp in place, and I just used a dremel style handheld tool hence the ugliness). Anyway, this is not visible.

chamfer-fix.jpg

 

After this the rear part of the enclosure fitted very well and the supplied screws were used. You probably only want to gently screw it in first, and power up and check that the display works, but also the touch capability functions. If touch capability does not work then probably the orange flex PCB has become unplugged. Open up the enclosure, pull the connector to the open position, insert the flex and then push the connector into the closed position.

 

Upside-Down Situation

This isn’t the end of the story! The Pi foundation made a mistake when it designed the LCD; the LCD was used up-side down! It was advertised as a very high quality display yet clearly the displayed images had extremely poor viewing angles. In a later software image the default view was inverted to try to repair the issue but it meant that manufacturers now had designs which expected the LCD to be mounted the initial way. The ‘bodge’ fix was to invert the image back in software, but it leaves users with poor viewing angles. Some vendors still show clearly incorrect images on their websites; I don’t know if they have not resolved the issue or just have misleading photos. Basically if you can see the orange flex PCB at the top, then the display is in the non-optimal, incorrect orientation. Turn it such that the orange flex PCB is at the bottom and that will have correct viewing angles.

wrongway-annotated2.jpg

 

The solution for this enclosure was to create a new stand to hold it the correct way up, to benefit from the best viewing angles. Two pieces of material (I used wood; plastic might be nicer) were cut to 55x30mm (the thickness can be around 6-10mm) and then an angle was cut as shown and then epoxied into position.

stand-dimensions.png

A side benefit of this fix is that if desired the entire unit can also be tipped to stand on all four points, for a horizontal layout.

fitted-stand.jpg

 

Summary

Although it took a few hours of effort the results could be worth it. There is easy access to the 40-way GPIO header connector, and good viewing angles.

display-sf-ranking.jpg