heart attack.jpg

Researchers from various universities have created a 3D printed patch that goes on the heart and heals scarred tissue. Tests being conducted on a mouse heart (Image via University of Minnesota)


Whether you’re scrolling through Facebook or watching the news, we are constantly reminded how important it is to take care of our heart. Heart disease is the top cause of death in the States killing more than 360,000 people a year, according to the American Heart Association. Heart attacks play a big role in that statistic and is still a major problem in the US. Even for those who survive heart attacks, there is significant damage done to the heart that may never get repaired no matter how hard doctors try. But that doesn’t mean we should give up. A team of scientists may have just found a way to patch up your heart with a 3D printed patch.


Researchers from the University of Minnesota-Twin Cities, University of Wisconsin-Madison, and the University of Alabama-Birmingham have developed a 3D-printed cell patch that heals scarred and heart tissue. They used laser-based bioprinting to fit stem cells based on an adult human heart, to a matrix based off a 3D scan of heart tissue’s native proteins. Once the cells grew, the matrix replicated the structures of normal heart tissues and began beating in sync.


Initial tests were conducted on a mouse who wore the patch after a simulated heart attack. Over the span of four weeks, researchers noticed an increase in functional capacity. As if that wasn’t impressive enough, the patch was eventually absorbed into the heart eliminating the need for further operations.


Results so far are promising, but the team knows there’s still a lot of work to do before the patch can actually be used on a human heart. The team remains optimistic saying patches for human hearts should be ready “within the next several years.” To help achieve this goal, they’re moving on to the next step, which involves running tests on a pig heart; it’s similar in size to a human heart.


Other researchers have tried to create a similar patch, but what makes this research different is how the patch is modeled after a digital, 3D scan of proteins in native heart tissue. 3D printing makes it possible to reach the micron resolution required to replicate structures of native heart tissue.


If this all pans out, then recovery from a heart attack would only require implanting a small patch. You would still have to be cautious and take care of yourself, but with the patch, there may be no need for additional surgeries. Still, it doesn’t change that fact that any surgery involving the heart is a delicate process. The team made no mention how invasive the procedure may or may not be. But you can’t discount how amazing this prospect would be.



Have a story tip? Message me at: cabe(at)element14(dot)com