Skip navigation
2016

unspecified1.jpg

Researchers of CU-Boulder, MIT and UC Berkeley have successfully built a photonic microchip that uses light to transmit data. It has a bandwidth of 300 gigabits across a minute 3x6mm area and is the first of its kind. It may revolutionize data transmission forever. (via University of Colorado Boulder)


While Intel’s new computer processing chips have gained a reputation for packing unprecedented power and speed, researchers at The University of Colorado Boulder are reinventing how we execute data transmission. In collaboration with researchers from MIT and UC Berkeley, the team has successfully transmitted data using light instead of electricity.

 

Relying on light for data transmission is genius. The technology can send information over a larger distance using the same amount of energy electrical units take, which means standard microchips will require even less energy than they already do. With this, photonic technology has another significant advantage – multiple streams of data can be transmitted at once across different electromagnetic spectrums, i.e., colors of light, on the same fibers currently used to transmit data electronically. Basing microchip technology on photons, while recycling existing hardware, will thus revolutionize data transmission, by transmitting data faster and more energy-efficiently than any technology currently available.

 

The technology is based on infrared light, with a wavelength one-hundredth the thickness of a human hair, and shorter than one micron, Miloš Popović, an assistant professor in CU-Boulder’s Department of Electrical, Computer, and Energy Engineering, co-corresponded the study, told reporters at CU-Boulder. One a single microchip, the researchers successfully developed a functional photonic chip with a bandwidth density of 300 gigabits per second per square millimeter. This is up to 50 times greater bandwidth than anything currently available on the market.

 

The researchers successfully built a functional photonic microchip that mimics electricity-only design. The chip is 3 by 6mm and utilizes the same electronic circuitry of existing models. Its light-based transmission technology, however, allows it to have 850 optical I/O components, and the design can be mass-produced by existing manufacturing processes fairly smoothly. It is the only chip of its kind – the only processor in the world to transmit data using light.

 

The researchers are confident in the technology’s contribution to modern computing. Mark Wade, a CU-Boulder PhD candidate and co-lead author of the study, said the design solves the computing communication bottleneck of electric-only systems, while remaining streamline enough to be mass-produced. The research team has plans to sell the technology, and a start-up was created to do just that. Ayar Labs (formerly ObtiBit) will continue to operate independently, specializing in high-volume data transmission using energy-efficient technology. The start up also won the MIT Clean Energy Prize just last year.

 

We live in the age of information. With current computing speeds already nearing the physical limitations of electricity-based technology, our societal advancements are limited by our computing speed. According to John E. Howland of Trinity University, meteorologists are limited by slower computing speeds. Faster processing will have a direct impact on the natural sciences, and our ability to understand the world around us. Beyond faster gaming and data retrieval than we ever thought possible, artificial intelligence and science will advance beyond our wildest imaginations when faster processing speeds are possible. And now they are.

 

According to study researchers, manufacturers have begun streamlining processes to mass-produce photonic technology. It won’t be long before we see the direct benefits of what a limitless society can accomplish together. Rajeev Ram, a professor of electrical engineering at MIT, led the research team. The details of the study were published in the journal Nature.


See more news at:

http://twitter.com/Cabe_Atwell

rose.jpg

Ordinary roses or a living, renewable biofuel source? Possible both? A group of Swedish scientists have made an epic breakthrough by successful incorporating functioning circuitry into a living organism (in this case, a common rose). They recently released their discoveries which successfully caused ions within the rose’s leaves to light up. The next step is using electronic-organic plants to acts as biofuel power plants. (image via Panoramic Images)

 

It seems that technology has triumphed over nature once more – taking something once sublime and beautiful and turning it into a cold, calculated machine. Never before were scientists able to successfully combine organic plant matter and electronic circuits without killing the plant. Now, a Swedish group of researchers from of Linköping University have released their chilling findings in Science Advances. Their project started in 2012, after many unsuccessful attempts. It seems that this time they are on the right track with a breakthrough that may change our relationships with plants and the whole natural world forever.

 

It starts with a rose: a beautiful and temperamental plant whose only function is to look beautiful. However, why simply enjoy a thing of beauty when you can turn it into an instrument, perhaps the rose can serve as a radio transmitter, or renewable energy source instead of just sitting there; or at least that is what many scientists may think. The issue with combining plants and electronics was that scientists were trying to splice them together somehow, or combine the inorganic with the organic by inorganic means.

 

rose tech.png

A schematic of how their new technology works from their journal article (via Berggren et al., 2015, Science Advances, Vol. 1, no. 10)

 

The genius of Magnus Breggren and his team from Sweden is that they have discovered how to use the natural functions of the plant and its components to create electronic circuitry. They have used a synthetic polymer which they feed to the plant the way plants feed on water for nutrients. As the polymer makes its way up the vascular system of the rose stem, it becomes a part of the xylem, the leaves, the veins, and the signals of the rose. These components of the plant are then used as the main components of the circuitry which allow electronics and organic bodies to merge and act as one.

 

Their current synthetic polymer mixture creates a wire that’s up to 10 cm long inside of the stem (xylem) without impeding the rose’s ability to absorb water and nutrients. Via this method, the group of scientists was able to light ions within the leaves of the plants. Berggren was so surprised that their experiments have actually worked that he can’t wait to test out new projects: among them is a biofuel concept. Berggren told Motherboard, “Right now we are trying to put electrodes into the leaves with enzymes that we connect to the electrodes,” he said. “The sugar that is produced in the leaves is converted by the enzyme; they deliver a charge to the electrode and then hopefully we can collect that charge in a biofuel cell.”

 

This latest proposition could entirely change our relationship with plants, as forests could turn into renewable power plants for nearby cities. Berggren hopes that this new biofuel possibility will allow us to gain resources from our natural world without destroying it. However, how viable is the health of the rose in the long term? No one knows. It is still very early days, but there is no doubt that science is about to get weirder as electronics and plants can truly begin to meld into a cyborg technology for years to come.


See more news at:

http://twitter.com/Cabe_Atwell

Filter Blog

By date: By tag: