Skip navigation
2016

DNA-storage-close-up.jpg

Over 10,000 GB can be stored in this tiny pink droplet! DNA storage a possibility? UW and Microsoft partnered up to create a method of accurately storing and recovering hard drive data into DNA snippets. Their latest trial was perfect at recovering data due to their new approach to encryption and decryption. (via University of Washington)

 

Wetware on the way?

 

Microsoft Research has currently decided to change the market for archival data storage by utilizing DNA to store millions of gigabytes of data in a single gram of DNA. However, in order to achieve this feat, which we recently posted about, they have teamed up with some researchers in the University of Washington; they shared their findings in a paper presented at ACM International Conference on Architectural Support for Programming Languages and Operating Systems.

 

Their paper elaborates on how Microsoft Research labs have been able to successfully store and retrieve data encoded in synthetic DNA with the help of a collaboration with University of Washington researchers. So far, this team is one of only two researchers to successfully encode and retrieve data stored in DNA with a one hundred percent success rate.

 

So, what’s the secret? The secret seems to lie in the encoding and decryption process. The process used to create and read the DNA is fairly simple. Once they have encoded a chunk of data into letters A, C, G, and T: the nucleotides which are the building blocks for DNA. They then outsource the creation of spinets of DNA strands which utilize their encoded sequence of letters.

 

To retrieve the data, they must sequence the DNA strands which are all together in the same test tube (seen above as a tiny speck of pink). So, of course, the decoding process is more involved than simply finding out the sequencing of the DNA within the test tube: you have to decode it. And here is where this team up of interdisciplinary scientists from Microsoft and University of Washington got it very right!

 

They put the magic into how they chose to encode the data from it’s original bits of zeros and ones into nucleotides A, C, G, and T. They knew that, if they could streamline their process, they would have little to no errors later in the decryption process. Essentially, they tried to make it as streamlined and simple as possible to avoid the errors that come with complexity. But how could they know where each snippet of DNA fell in the full sequence of the data? They encoded zip codes and street address equivalents into each snippet of DNA to correctly place each sequence into the bigger sequence for accurate decryption. A pretty clever and simple solution, right?

 

All in all, their novel approach to encryption and decryption paid off as they were able to restore all of the data from the DNA without any errors or data loss. The whole project is impressive, but this current method can only work for storing archival data that requires no alterations and no immediate access. While this can provide a good service to companies who have large data stores of information, I wonder how practical this really is. On the one hand, one drop of DNA can store about 10,000 GBs. On the other hand, what is our obsession with storing everything?!

 

This can also present a sort of breach of security as companies like Facebook will have a copy of all of your photos and your profile for eternity – long after you choose to delete your profile and cancel your account? Also, with the new compactness of DNA data storage will companies choose to keep archival data forever, rather than for 5-10 years when they run out of hard disk space? Where is the line drawn, and what are the rights of customers if their archival data (which could include SSN and bank information) is stored forever by a company that they no longer choose to actively do business with?

 

Have a story tip? Message me at:

http://twitter.com/Cabe_Atwell

Tibbo Project System (TPS) is a highly configurable, affordable, and innovative automation platform. It is ideal for home, building, warehouse, and production floor automation projects, as well as data collection, distributed control, industrial computing, and device connectivity applications.

 

Suppliers of traditional “control boxes” (embedded computers, PLCs, remote automation and I/O products, etc.) typically offer a wide variety of models differing in their I/O capabilities. Four serial ports and six relays. Two serial ports and eight relays. One serial port, four relays, and two sensor inputs. These lists go on and on, yet never seem to contain just the right mix of I/O functions you are looking for.

 

Rather than offering a large number of models, Tibbo Technology takes a different approach: Our Tibbo Project System (TPS) utilizes Tibbits® – miniature electronic blocks that implement specific I/O functions. Need three RS232 ports? Plug in exactly three RS232 Tibbits! Need two relays? Use a relay Tibbit. This module-based approach saves you money by allowing you to precisely define the features you want in your automation controller.

Here is a closer look at the process of building a custom Tibbo Project System.

 

 

Start with a Tibbo Project PCB (TPP)

 

 

A Tibbo Project PCB is the foundation of TPS devices.

Available in two sizes – medium and large – each board carries a CPU, memory, an Ethernet port, power input for +5V regulated power, and a number of sockets for Tibbit Modules and Connectors.

 

Add Tibbit® Blocks

 

Tibbits (as in “Tibbo Bits”) are blocks of prepackaged I/O functionality housed in brightly colored rectangular shells. Tibbits are subdivided into Modules and Connectors.

Want an ADC? There is a Tibbit Module for this. 24V power supply? Got that! RS232/422/485 port? We have this, and many other Modules, too.

Same goes for Tibbit Connectors. DB9 Tibbit? Check. Terminal block? Check. Infrared receiver/transmitter? Got it. Temperature, humidity, and pressure sensors? On the list of available Tibbits, too.

 

 

Assemble into a Tibbo Project Box (TPB)

 

Most projects require an enclosure. Designing one is a tough job. Making it beautiful is even tougher, and may also be prohibitively expensive. Finding or making the right housing is a perennial obstacle to completing low-volume and hobbyist projects.

Strangely, suppliers of popular platforms such as Arduino, Raspberry Pi, and BeagleBone do not bother with providing any enclosures, and available third-party offerings are primitive and flimsy.

Tibbo understands enclosure struggles and here is our solution: Your Tibbo Project System can optionally be ordered with a Tibbo Project Box (TPB) kit.

The ingenious feature of the TPB is that its top and bottom walls are formed by Tibbit Connectors. This eliminates a huge problem of any low-volume production operation – the necessity to drill holes and openings in an off-the-shelf enclosure.

The result is a neat, professionally looking housing every time, even for projects with the production quantity of one.

Like boards, our enclosures are available in two sizes – medium and large. Medium-size project boxes can be ordered in the LCD/keypad version, thus allowing you to design solutions incorporating a user interface.

 

 

Unique Online Configurator

 

 

To simplify the process of planning your TPS we have created an Online Configurator.

Configurator allows you to select the Tibbo Project Board (TPP), “insert” Tibbit Modules and Connectors into the board’s sockets, and specify additional options. These include choosing whether or not you wish to add a Tibbo Project Box (TPB) enclosure, LCD and keypad, DIN rail mounting kit, and so on. You can choose to have your system shipped fully assembled or as a parts kit.

Configurator makes sure you specify a valid system by watching out for errors. For example, it verifies that the total power consumption of your future TPS device does not exceed available power budget. Configurator also checks the placement of Tibbits, ensuring that there are no mistakes in their arrangement.

Completed configurations can be immediately ordered from our online store. You can opt to keep each configuration private, share it with other registered users, or make it public for everyone to see.

 

 

Develop your application



Like all programmable Tibbo hardware, Tibbo Project System devices are powered by Tibbo OS (TiOS).

Use our free Tibbo IDE (TIDE) software to create and debug sophisticated automation applications in Tibbo BASIC, Tibbo C, or a combination of the two languages.

To learn more about the Tibbo Project System please visit http://tibbo.com/tps.html. TPS parts, as well as complete systems can be ordered from our online store (http://tibbo.com/store/tps.html).

0425_TESLA-3-rn-1r4lnpb.jpg

Scientists at Rice University discovered the force field surrounding a Tesla coil is strong enough to cause carbon nanotubes to self-assemble, a phenomenon that could be useful in regenerative medicine.

 

What if carbon nanotubes could self-assemble, and harness enough energy to illuminate LEDs without touch? Thanks to a new research study conducted by scientists at Rice University, now it is.

 

0425_TESLA-2-rn-165leqj.jpg

 

The process is called “Teslaphoresis” and is the manner by which carbon nanotubes self-assemble into long wires, organized by charge, due to the force field emitted by a Tesla coil. The phenomenon has only previously been observed at the nano level, in ultrashort distances. This new discovery holds promise for expanding the process to allow for new methodologies in science and energy research.

 

In the experiment, researchers observed the effects of a Tesla coil on carbon nanotubes. The scientists observed that the nanotubes not only self-assembled according to positive or negative charge, but also moved toward the coil over considerable distances. Rice chemist Paul Cherukuri led the research team and the project was entirely self-funded.

 

0425_TESLA-1-rn-29eew8m-310x206.jpg

 

"Electric fields have been used to move small objects, but only over ultrashort distances," Cherukuri said. "With Teslaphoresis, we have the ability to massively scale up force fields to move matter remotely."

 

The research team plans to continue its work, and believes the phenomenon may have a future impact on the development of regenerative medical practices. The team plans to observe how nanotubes are affected by the presence of several Tesla coils at once.

 

The study findings were published in ACS Nano.

 

 

Have a story tip? Message me at:

http://twitter.com/Cabe_Atwell

Filter Blog

By date: By tag: