Skip navigation
2016

7C44.jpg

Iowa State University’s lithium-ion battery is capable of producing 2.5V and dissolves/dissipates in 30-minutes when exposed to water. (via Iowa State)

 

Normally, when it comes to lithium-ion batteries we prefer them to be robust and not easily damaged while retaining a long lasting shelf life. A team of scientists from the University of Iowa on the other hand, created almost the exact opposite of what we would consider great features with a Li-ion battery that self-destructs when exposed to water. In other words, it’s not ideally suited for use in today’s smartphones, which have a tendency to wind up in a pool of liquid more often than not.

 

On the other hand, these types of batteries would be perfect for military applications where sensitive devices would need a self-destructive capability before they wound up in enemy hands. They would most certainly benefit other applications as well, such as environmental sensors that would deteriorate when exposed to rain or even used in implantable medical devices that dissolve over a specific period of time, negating the need to be surgically removed.

 

The battery is actually part of a new field of study known as ‘transient electronics’, which are essentially electronic devices that can perform a variety of functions but decay quickly when exposed to heat, light or liquids. The team, led by assistant professor of mechanical engineering Reza Montazami designed the first transient battery that could power such devices and maintain the power, shelf life and stability needed for practical applications.

 

The team designed their battery using the same Lithium-ion chemistry found on the commercial market- carbon for the negative electrode and a silver-metal oxide for the positive electrode with a lithium-salt/organic solvent acting as the electrolyte. All of which was then wrapped in a pair of polyvinyl alcohol-based polymer layers. Don’t let the above picture fool you as the battery measures in at 6-millimeters wide, 5-millimeters long and just 1-millimeter thick.

 

When dropped in water the liquid causes the casing to swell, thereby breaking apart the electrodes and dissolving away in just 30-minutes. It does have one caveat though- it doesn’t completely disappear as the nano-particles in the electrodes don’t degrade, however they do disperse when the casing breaks apart. Add to the fact that it only produces 2.5V (enough to power a desktop calculator), it doesn’t have much practical applications at this point beyond powering a simple sensor device. The team did state however, that the battery could be made to produce more power but it would increase its size, which in-turn would take longer to dissolve. Chaining several together could also be an option for devices requiring increased power.

 

For more information on the University of Iowa’s transient battery head here (http://onlinelibrary.wiley.com/doi/10.1002/polb.24113/full)

 

Have a story tip? Message me at:

http://twitter.com/Cabe_Atwell

enterprise-aerial-factory-view-2x1.jpg

Intel announced a new license with ARM, that may position it to rapidly manufacture nano-sized chips for mobile use. While AMD has had access to ARM technology for a handful of years, it has little room to compete in the mobile space. (via Intel)

 

Intel dominates the CPU space, but when it comes to mobile, the processor manufacturer falls short. The tech giant has some tricks up its sleeves, however, as it just announced a new license with ARM Holdings that will allow it to use ARM designs in its next model of nano-sized chips, perfect for mobile.

 

Intel announced the new license at the Intel Developer Forum in San Francisco, California. It said it plans to use its 10-nanometer production lines for the advent of new and improved chips for use in smartphones developed by companies like Qualcomm Inc. and Apple Inc.

 

It’s a move to remain competitive in an increasingly shifting space. While Intel remains competitive for CPU chips, its other services have not been considerably successful. Intel’s foundry business, for example, has seen few orders, although the new ARM license could change that. If the space were repurposed for ARM production, Intel’s entry into mobile chip development could be magnitudinous. But Intel will have to remain competitive with long-time rival AMD.

 

AMD is the chip of choice for high-performance functions, such as gaming. While Intel’s chips pack a speedy punch, AMD almost always outprices Intel, which has sustained its business for decades. AMD stock price shot up over 50% in the past few months. Proof in the price.

 

AMD’s Opteron ARM A-Series Processors have been around for years. The Opteron A1100 is suited for the enterprise, with SOC delivery, scalable performance, optimized TCO, and superior energy efficiency. The ARM Cortex-A57 chips also deliver high speed, connectivity, and power with 64-bit processing.

 

AMD’s ARM division, however, targets software and hardware developers, server infrastructure, and data center processing. As such, although AMD’s products may retail for less, the technology is positioned to support back-end processes, not mobile. As such, Intel may still get to the mobile market first, at the nanoscale needed to support rapid production.

 

Intel works quickly. As it already has a foundry facility with serious production capacity, it might not be long before we see the next generation of Intel chips in the latest iPhone update. And if prices remain competitive, that might not be such a bad deal.

 

Have a story tip? Message me at:

http://twitter.com/Cabe_Atwell

unnamed.png

Glicode uses popular snacks to teach kids programming; a high school in Japan has a class dedicated to drones. Ever thought of using food to learn about coding?

(Photo from Glicode)

 

It seems Japan really wants to encourage kids to be invested in robotics and coding. Teaching kids how to code is the latest tech fad. Companies approach the topic in various ways, like video games and robotic toys, but only one company is doing it with food. And yes, the company is Japanese. Glico, the maker of popular Japanese snacks like Pocky, has developed an app called Glicode. The app is made to teach kids the basics of coding.

 

So how does Pocky go from delicious biscuit treat covered in chocolate to computer learning? Kids actually use their favorite snacks by Glico with the app. Talk about playing with your food. Users have to position and arrange the snacks in a certain way, so the app can translate it into digital commands. Send the command to the app by taking a picture. If it's done correctly the character on the app can move through obstacles.

 

The app is available for Android outside of Japan. The company is currently working on a version for iOS. It's a weird idea; who would've thought of using food to teach coding? But it's pretty smart. It presents a fun, simple, and tasty way for kids to interact with technology. And you have to imagine they get to eat all those tasty snacks when they get things right. It also encourages creativity. Using snacks shows kids that imagination can make anything possible. The closest the US gets to a unique coding app is Apple's Swift Playgrounds. It's an isometric platform game where kids use basic programming to solve puzzles.

 

Japan doesn't want to only target youngsters, they want the older kids to get in on the action too. Vantan High School, a private school in Japan recently announced a new course dedicated to drones and robotics. The course is a full time three year program that teaches the basics of working and maintaining drones and other robots. The course starts April 2017. And you thought high school shop was cool.

 

The school started the program because they believe there aren't enough human resources to handle the increasing demand for skilled drone engineers in Japan. Some of the things students will be learning include aviation and radio laws, computer programming for system upgrades, and drone piloting. The course will be open to junior high students and existing Vantan learners. These kids will have a leg up on the competition and the focus on robotics may ensure they get some great jobs by the time they graduate.

 

But the US isn't left in the dust. Though high school courses dedicated to drones and robotics isn't common, there is one teacher looking to change that. Lee Butterfield is an Anchorage South High School professor who brought drones into the classroom for demonstrations. Shortly after, he decided to create an entire class around teaching students how to operate drones. Butterfield teamed up with Alaska Aerial Media to create the course where students will learn how to operate unmanned aircraft systems. They will also be prepared to pass the FAA test.

 

More and more classrooms around the country are integrating drones into the curriculam, so it won't be long until we see more courses solely dedicated to teaching kids the basics of robotics. Then maybe we can be as cool as Japan.

 

Have a story tip? Message me at:

http://twitter.com/Cabe_Atwell

Filter Blog

By date: By tag: