5g_evolution_logo_946x432.jpg

In it for the G- AT&T buys Straight Path for the increase in wave spectrum it needs to unleash 5G. (Image credit AT&T)

 

AT&T announced recently that it’s buying out Straight Path Communications to the tune of $1.6-billion in stocks to grab the airwaves it needs to advance their 5G endeavor. Chief strategy officer (Technology and Operations) John Donovan made a rather bold statement earlier this year about AT&T’s roadmap to the 5G horizon saying, “Our 5G Evolution plans will pave the way to the next-generation of higher speeds for customers. We’re not waiting until the final standards are set to lay the foundation for our evolution to 5G, we’re executing now.”

 

So what exactly does $1.6-billion (tax-free to boot) buy? 735 mmWave licenses in the 39GHz band and 133 in the 39GHz spectrum, both of which are considered the gold-zone for 5G implementation. AT&T states that those licenses cover the entire US, making it easy to rollout future 5G technologies. As part of AT&T’s 5G Evolution plan, the company collaborated with Nokia to demonstrate the feasibility of 5G technology by streaming DirectTV Now using mmWave hardware.

 

Of course, this isn’t AT&T’s first acquisition in the 5G realm as the company snagged the 24 and 39 licenses from FiberTower back in February of this year, giving them about the same chunk of pie as Verizon, who have also been gobbling up telecommunications companies like the Cookie Monster with a pallet of Chips Ahoy!. Their recent acquisition of XO Communications cost them $1.8-billion and net them a sizable share of the 28 and 39GHz spectrum.

 

It’s important to note that there currently is no 5G standard, only a footprint laid out by the NGMN (Next Generation Mobile Network) Alliance- a group of telecom companies, research institutes, vendors and manufacturers who gave us LTE, SAE, and WiMax. The footprint for that 5G standard they sketched-out is as follows:

 

    -Data rates of tens of megabits per second for tens of thousands of users.

    -Data rates of 100 megabits per second for metropolitan areas.

    -1Gb per second simultaneously to many workers on the same office floor.

    -Several hundreds of thousands of simultaneous connections for wireless sensors (IoT applications).

    -Spectral efficiency significantly enhanced compared to 4G.

 

Sounds great for those living in cities with office jobs but not so much for those living in rural areas. However, they would also like to expand coverage to those areas at some point (see: never), perhaps over a satellite network.

 

Remember AT&T's Bogarting of iPhones when they first launched in 2007? Perhaps they'll share with the other networks. Otherwise, they can charge whatever they want, like with the iPhones back then. Those 300-page bills were just crazy.

 

Have a story tip? Message me at: cabe(at)element14(dot)com

http://twitter.com/Cabe_Atwell