7 Replies Latest reply on Jul 13, 2019 3:19 PM by zagene

    TP5100 LiPo charging module failing


      Hi, I purchased 10 of the TP5100 modules trough Banggood and already six of them failed miserably. (With all of them the TP5100 IC failed)

      The problem seems to be with some external components and I studied the circuit and the badly translated document so I redid the document as well as I could.

      The main problem seems to be with the Schottky, the SS34’s reverse leakage current maybe just to high for the IC (or maybe sub-standard).

      Im planning to replace it with MBRS540T3G with an reverse leakage of 300uA (any suggestions of a Schottky with a DO-214AB package size) as a replacement for the four that survived. I'm also going to replace the remaining three 10uF caps for just in case and also the 100nF cap. I’m going to use a low ESR 10uF cap from TDK with a 10% tolerance (C3216X7R1E106K160AB). All the components footprint is the same as the current. I’m also thinking about replacing the two 100 mOhm resistor with a 1% tolerance 50 mOhm 1W resistor (MCS1632R050FER) (Rs) that is specifically for current sense purposes just to be on the safe side (The modules takes way to long to reach me to risk the remaining four and with sensitive devices like the LiPo batteries make it high risk)

      The NTC that is on the diagram is not avaiable on the module and seems to be tied to ground with RTRIC for a 10% trickle charge current. The on board LED also have some pads for an external two color LED (common anode) next to the input. The PWR_ON is left floating as in the diagram. To enable 8.4V (two cell charging) the SET pads may be linked to establish a link between CS and the reference voltage at VREG.

      I have improved the translated document on the TP5100 and made some notes in PDF format If you are interested.

      Could you please give comments about the suggested changes. I just hate to loose the last four modules as this seems to be and good charging module

      TP5100 Module

      TP5100 Diagram

        • Re: TP5100 LiPo charging module failing

          Hi Eugene,


          This seems to be a LiPo battery charger module.. if six have already failed, I'd personally stay away from the remainder. If you can't have confidence in the design, it's not a good idea to push 2A into a LiPo. The changes you are suggesting, are they recommended by the manufacturer of the IC? I ask, because I could only find a Chinese datasheet (which I can't read).

          3 of 3 people found this helpful
          • Re: TP5100 LiPo charging module failing

            Hi Eugene,


            I am not sure that changing out the capacitors will be much help.  They are there to help eliminate noise on the battery voltage sense and the charger output and would not likely cause the failures that you are seeing.  The sense resistor ( parallel 100mOhm ) again are very likely to be fine.  They are used to measure/control the charging current and would not likely cause the failures that you are seeing.  The NTC shown on the diagram is actually suppose to be a part of the battery pack, usually connected via a third wire from the battery.  The charger chip uses the NTC to help determine the charging current based on voltage, current and temperature.  The real questions is how does it absence effect the charging algorithm.  I could not find anything in the spec sheet that I found (loose translation into English).


            As shabaz points out, 2A charging is highly aggressive and not something that all batteries can handle.  It is possible that the battery/charger mis-match might be another factor in the high rate of failure.  Please use caution when charging Li-Ion batteries as very bad things can happen if you are not managing the charge correctly.



            4 of 4 people found this helpful
            • Re: TP5100 LiPo charging module failing

              Something else I failed to mention,

              The failure to the IC occurred even before I added the 18350 LiPo Cell

              It happened directly after I applied a 13.8V supply to the module.

              The supply is a Regulated step down switch mode power supply, 220VAC input and a (adjusted) 13.8VDC output at 600W output rated.

              The modules was connected 4 in parallel input with the output to 4X TP5100 modules individually connected to each of a 18350 battery holder

              The modules is placed next to each other mounted with double sided heatsink tape (fully insulated) on a Aluminum plate with the battery holder.

              It seems that the problem (from other Youtube videos I watched and reviews I've read just as soon as you place it in close proximity of another circuit.

              So my other conclusions from what I've read and out of own observations is that the problem maybe with the input of VIN and the pre-charge capacitor placed parallel over VIN and Ground or maybe the switching circuit that may cause some unwanted induction to the IC or maybe bad capacitors at the input or output.

              Unfortunately I ordered the wrong package Schottky diode for replacement (SMC in stead of SMA size package) so fitting it as a test may not be possible.

              My other question, would a TVS at the input like a 1N6377 or at the single cell output like 1N6373 not work to clamp down over voltage.

              I've got 4 left, I want to use it but safely and without seeing the main electronic component manufacture compound (smoke) escaping (its a bit difficult to put it back in)

              Further information, the 18350 cells I want to use C rate is 3A/h with a maximum quick charge rate at 1.3C and a standard charge rate at 0.5C to 0.66C so it seems that the charge current of 2A may be in the limits of normal rate.

              Thanks for the help everyone, I am however not able to discard something or just because the module may have other flaws that could be corrected. I do not think the original engineer planned for it to fail in this way, but more that the maker of the module take some shortcuts with "cheap" external components.


              3 of 3 people found this helpful